Implementing a ChatGPT Plugin in Python: A Step-by-Step Guide
To demonstrate how to create a ChatGPT plugin, let’s assume we want to build a plugin that allows users to receive weather updates based on…
To demonstrate how to create a ChatGPT plugin, let’s assume we want to build a plugin that allows users to receive weather updates based on their location. This plugin will integrate with an external weather API to provide the requested information.
Prerequisites
- Familiarity with Python programming
- Access to the OpenAI GPT-3 API
- An API key for a weather service (e.g., OpenWeatherMap)
Step 1. Set up the environment
Begin by installing the necessary Python libraries using pip:
pip install openai requests
Step 2. Create the plugin class
Create a new Python file, ‘weather_plugin.py’, and define a WeatherPlugin class. This class will contain the logic for our plugin:
import openai
import requests
class WeatherPlugin:
def __init__(self, gpt3_api_key, weather_api_key):
self.gpt3_api_key = gpt3_api_key
self.weather_api_key = weather_api_key
openai.api_key = gpt3_api_key
# Add methods for fetching weather data and generating responses here
Step 3. Fetch weather data
Next, add a method to the ‘WeatherPlugin’ class that fetches weather data from the OpenWeatherMap API using the provided API key and location:
def fetch_weather_data(self, location):
url = f"http://api.openweathermap.org/data/2.5/weather?q={location}&appid={self.weather_api_key}"
response = requests.get(url)
return response.json()
Step 4. Generate a response using ChatGPT
Add another method to the ‘WeatherPlugin’ class that generates a human-like response based on the fetched weather data:
def generate_response(self, weather_data):
prompt = f"Please provide a weather update for {weather_data['name']} based on the following data: {weather_data}"
response = openai.Completion.create(
engine="text-davinci-002",
prompt=prompt,
max_tokens=50,
n=1,
stop=None,
temperature=0.5,
)
return response.choices[0].text.strip()
Step 5. Create a user-facing method
Add a public method to the ‘WeatherPlugin’ class that accepts a location and returns a weather update:
def get_weather_update(self, location):
weather_data = self.fetch_weather_data(location)
return self.generate_response(weather_data)
Step 6. Test the plugin
Finally, you can test the ‘WeatherPlugin’ by instantiating it with the necessary API keys and requesting a weather update:
if __name__ == "__main__":
gpt3_api_key = "your_gpt3_api_key"
weather_api_key = "your_weather_api_key"
location = "New York"
weather_plugin = WeatherPlugin(gpt3_api_key, weather_api_key)
weather_update = weather_plugin.get_weather_update(location)
print(weather_update)
This approach can be applied to various other applications, enhancing the capabilities of the ChatGPT model and tailoring it to specific user needs.
Follow me on Medium, LinkedIn, and Twitter. Let’s connect!
All the best,
Luis Soares
CTO | Head of Engineering | Cyber Security | Fintech & Blockchain SME | Web3 | DeFi
#ai #artificialintelligence #chatGPT #plugin #application #softwareengineering #softwaredevelopment #coding #software #python