Implementing a ChatGPT Plugin in Python: A Step-by-Step Guide

To demonstrate how to create a ChatGPT plugin, let’s assume we want to build a plugin that allows users to receive weather updates based on…

Implementing a ChatGPT Plugin in Python: A Step-by-Step Guide

To demonstrate how to create a ChatGPT plugin, let’s assume we want to build a plugin that allows users to receive weather updates based on their location. This plugin will integrate with an external weather API to provide the requested information.

Prerequisites

  1. Familiarity with Python programming
  2. Access to the OpenAI GPT-3 API
  3. An API key for a weather service (e.g., OpenWeatherMap)

Step 1. Set up the environment

Begin by installing the necessary Python libraries using pip:

pip install openai requests

Step 2. Create the plugin class

Create a new Python file, ‘weather_plugin.py’, and define a WeatherPlugin class. This class will contain the logic for our plugin:

import openai 
import requests 
 
class WeatherPlugin: 
    def __init__(self, gpt3_api_key, weather_api_key): 
        self.gpt3_api_key = gpt3_api_key 
        self.weather_api_key = weather_api_key 
        openai.api_key = gpt3_api_key 
 
    # Add methods for fetching weather data and generating responses here

Step 3. Fetch weather data

Next, add a method to the ‘WeatherPlugin’ class that fetches weather data from the OpenWeatherMap API using the provided API key and location:

def fetch_weather_data(self, location): 
    url = f"http://api.openweathermap.org/data/2.5/weather?q={location}&appid={self.weather_api_key}" 
    response = requests.get(url) 
    return response.json()

Step 4. Generate a response using ChatGPT

Add another method to the ‘WeatherPlugin’ class that generates a human-like response based on the fetched weather data:

def generate_response(self, weather_data): 
    prompt = f"Please provide a weather update for {weather_data['name']} based on the following data: {weather_data}" 
    response = openai.Completion.create( 
        engine="text-davinci-002", 
        prompt=prompt, 
        max_tokens=50, 
        n=1, 
        stop=None, 
        temperature=0.5, 
    ) 
    return response.choices[0].text.strip()

Step 5. Create a user-facing method

Add a public method to the ‘WeatherPlugin’ class that accepts a location and returns a weather update:

def get_weather_update(self, location): 
    weather_data = self.fetch_weather_data(location) 
    return self.generate_response(weather_data)

Step 6. Test the plugin

Finally, you can test the ‘WeatherPlugin’ by instantiating it with the necessary API keys and requesting a weather update:

if __name__ == "__main__": 
    gpt3_api_key = "your_gpt3_api_key" 
    weather_api_key = "your_weather_api_key" 
    location = "New York" 
 
    weather_plugin = WeatherPlugin(gpt3_api_key, weather_api_key) 
    weather_update = weather_plugin.get_weather_update(location) 
    print(weather_update)

This approach can be applied to various other applications, enhancing the capabilities of the ChatGPT model and tailoring it to specific user needs.

Follow me on Medium, LinkedIn, and Twitter. Let’s connect!

All the best,

Luis Soares

CTO | Head of Engineering | Cyber Security | Fintech & Blockchain SME | Web3 | DeFi

#ai #artificialintelligence #chatGPT #plugin #application #softwareengineering #softwaredevelopment #coding #software #python

Read more